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ABS TRAC T . 
1 

A method is developed for  the determination of mean ionospheric 

height by analysing radio signals f rom a beacon satellite. 

effects of the ionosphere on the received signals, Faraday rotation and 

doppler dispersion, a r e  measured. By searching for their consistency 

and using height dependence of the earth 's  magnetic field, i t  becomes 

possible to calculate mean ionospheric height along the focus of satellite 

directions from the observing station. 

of satellite passes involving both normal and unusual ionospheric con- 

ditions and height profiles a r e  developed over a range of about five degrees 

of latitude. 

Two major 

The method is applied to a number 
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CHAPTER 1 

INTRODU C TION 

Methods of Studying Ionization Profiles in the Ionosphere 1. 
~ 

One of the most widely used methods of studying the height 

distzcibiitis: of free electrons in the ianosphere has been the pulse 

sounding method which i s  based on measuring the time taken for 

I 

a pulse of radio waves to travel to the ionosphere and back as a 

function of frequency. 

electron density a s  a function of height up to the height of the 

electron density maximum. 

ground sounders in recent years, it  has become possible to obtain 

complete electron density profiles with this method. ( *) Although 

the satellite has continuous spatial coverage, on the ground this 

can only be achieved with closely spaced stations. 

These measurements can be used to deduce 

By making use of both satellite and 

The incoherent scatter technique(2) also provides a means 

of determining the electron density profile by transmitting high 

frequency radar pulses and measuring the amount of power 

scattered back by free electrons in the ionosphere. 

requires very sensitive equipment, but i ts  coverage i s  not 

limited to altitudes lower than the maximum electron density 

height, and i t  has some ability for spatial coverage around the 

station. 

This method 

There a r e  many other methods for accurate determination 

of electron density profile using rockets. 

costly operations rocket measurements a r e  limited to single pro- 

fi les a t  a time without any time or  spatial variations. 

Because of their 



2 

2. Satellite Beacon Experiments 

The beacon satellites, usually used exclusively for iono- 

spheric research, transmit linearly polarized unmodulated waves 

of frequencies somewhat greater  than the critical frequency of the 

ionosphere. Ground stations deduce information about the iono- 

sphere by analyzing received signal f rom the satellites. 

One of the major methods of investigation involves measure-  

ments of the dispersive doppler frequency shift(8) resulting from 

the change of phase path length between the satellite and the 

receiver due to the ionosphere. This can be done by measuring 

the departure from a harmonic relationship of the received signals 

from harmonically related satellite transmitters.  The reduction 

of phase path length is dependent upon the integrated electron 

density along the wave path. 

A second technique for the determination of this integrated 

electron density, total electron content, involves observation of 

Faraday rotation''). Travelling through a magneto-ionic medium 

like the ionosphere, a linearly polarized electro-magnetic wave 

will experience a rotation of i ts  plane of polarization about the 

axis of propagation. The amount of rotation depends upon the inte- 

grated electron density and also on the longitudinal component of 

the ear th 's  magnetic field which is a function of height. Because of 

i ts  magnetic field and height dependency, any deduction of the total 

electron content from Faraday rotation requires a knowledge of the 

electron density profile; however the received signals from the 

satellite yield no information about the ionization distribution. 
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Usually, total electron calculations have been done by assuming an 

ionospheric height and evaluating the magnetic field a t  that 

altitude. 

3.  Statement of the Problem 

A method is to be developed to determine mean ionospheric 

height by comparing Faraday rotation and dispersive doppler fre- 

quency shift, and searching for consistency between these two 

effects of the ionosphere. 

Faraday rotation makes this ionospheric height calculation possi- 

ble. 

points along the locus of the satellite's transit ,  i t  will be possible 

to study spatial variations in height as well. 

The magnetic field dependency of 

By determining the mean ionospheric height a t  a number of 
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1. Faraday Rotation 
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CHAPTER 2 

RST-ORDER THEOR! 

In propagating through a magneto-ionic medium, an  electro- 

magnetic wave travels in two different characterist ic modes. 

characteristic waves,  

These 

called ordinary and extraordinary, generally 

a r e  elliptically polarized with opposite senses of rotation, and their 

complex refractive indices a r e  given by the well-known Appleton- 

Hartree equation. (7) 

X 
1 I?  

L J 

where 

x = fN/f 2 2  

YL = fL/f 

Y T  = fT/f 

z =v/2 i l f  

f i  = Ne2/4.rr 2 E m 
0 

f L  = (Be/2rm)Cose 

f T  = (Be/&m)SinO 

f = wave frequency 

v = frequency of collisions of electrons with he-vy parti  

N = number density of electrons 

e = the charge of an electron 

le s 



m = mass of an electron 

= electric permittivity of f ree  space 
0 

B = induction of the imposed magnetic field 

0 = the angle between thdmagnetic field and the wave 

no rmai  

A l l  quantities a r e  in rationalized MKS units. Subscripts "e" 

and "0" denote extra-ordinary and ordinary modes respectively. 

For  wave frequencies used in satellite beaccn experiments, 

the refractive index is close to unity and the quantity 2, which is 

small, appears significantly only in the imaginary par t  of the 

refractive index, i. e. in absorptive effects. Therefore in the 

present study where refractive effects alone a r e  involved, i t  is 

possible to simplify the expression for the refractive index by 

assuming 2 = 0. 

Further simplification i s  possible by making use of the 

quasi-longitudinal (QL) approxima tion, 

(2 ) 
y$ <<(l-x) 2 - 

The QL approximation is validfor a wave frequency of 40MHz 

provided that the w-ave norm1 is mt within about three degrees of 

being perpendicular to the geomagnetic field. 

receiving station like University Park,  Pennsylvania (40.8 N, 

7 7 . 9  w),- the propagation of satellite sigDals i s  always quasi- 

For  a mid-latitude 

0 

0 

longitudinal. 

form 

This means that the index of refraction assumes the 



6 

(3 )  

Also, under these assumptions the two characteristic waves 

can be approximated a s  circularly polarized with opposite senses 

of rotation. Due to the difference between the phase velocities a€ 

the two modes, the resulted received signal f rom a linearly polar- 

ized source becomes a linearly polarized wave with a direction of 

polarization rotated from the original around the axis of propa- 

gation This rotation,n,  known a s  Faraday rotation, can be 

expressed in terms of the difference betyeen the refractive indices 

of the two modes, (1) 

where ds is the incremental ray path and the integrals a r e  taken 

over the entire r a y  path. 

This expression is valid for frequencies much higher than 

both the plasma frequency (f ) and the electron gyro-frequency (f,), 

because i t  is assumed that the ray path for  both modes a r e  common. 

With these high frequency approximations, 

N 
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the following equation can be written for the Faraday rotation: 

BLN ds 
S 

10-7 j’ 3 e c  n =  
0 2?121n2f 

where 0 is expressed in half-rotations. 
0 

2 .  Doppler Effect 

Besides the Faraday rotation, another effect of the iono- 

sphere on the signals received from a satellite i s  a reduction of 

the phase p a b  length, A P o ,  between the source and the observer.  

A P o  = Po - P 

where 

P 

P 

= the phase path length for a free-space medium 

= the actual phase path length 

0 

In te rms  of the refractive index, P can be expressed as 

P = r n d s  
3 
S 

and with the high frequency approxim. tion the expression. for 

A P  can be reduced to (8 ) 
0 

2 
A P  =-lo e c  - 7  S N d s  

2nmf 0 
S 

where A P  i s  expressed in f ree  space wave lengths a t  frequency f .  
0 
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The rate of change of this phase path length reduction will 

be observed at a ground- base receiving station as a dispersive 

doppler frequency shift in addition to the non-dispersive doppler 

shift which is due solely to the movement of the satellite. 

evaluation of the ionospheric effect on the doppler frequency is 

often not possible as  this requires very accurate knowledge of the 

position of the satellite with time, and of the frequency of its 

radiated signal. However, the frequency dependent par t  of the 

ionospheric doppler effect can be measured by analyzing signals 

from harmonically related satellite transmitters.  

of the received signals from such harmonic relationship can be 

measured and attributed to the dispersive properties of the 

changing ionospheric path of propagation. 

Direct 

The departure 

(4) 3 .  To tal Electron Content 

Total electron content is  defined as the total ionization in a 

vertical column between the satellite and the ground, and can be 

expressed with the following equation: 

where hs is the satellite height. 

With an assumption of a horizontally stratified ionosphere, 

equation 4 can be rewritten as 

e c  3 Jobs BLSece N dh - 
OO - 2a2rn2f 



where 8 is the zer,ith angle 

By defining BLSece 

along the straight line path 

vation point, total electron 

Faraday rotation using 

2 2 2  
NT =- 

ZIT m f 

e c .  

a!: height h. 

a s  the weighted mean value of B Sece L 
between the satellite ar,d the obser- 

cor,tent can be calculated from the 

*O 
10' 

4. Mean Ionospheric Height 
-~ ~~ 

Equation 4 may be rewritten as 

(7) 

where EL i s  the mean value of the longitudinal field component 

along the ray path weighted by the electron density distribution 

along this slant pati-,. 

value, BL, as given by equation 8 w'lll be c!ei:nc.d as the 

ionospheric height". 

The height at which BL assumes i t s  mean 

1 1  
- 

mean 

By seeking consistency betvrrees the doppler shift 3nd the 

Faraday rotation from equations 5 and 8 we obtain 
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where K is a constant equal to .rrmf/e. 

Thus if i t  is possible to determine no, and A P o  absolute- 

ly then the value of EL can be computed and the mean ionospheric 

height found by comparison of this computed value with a magnetic 

field model. 

Since BL is usually a slowly varying function of height , 

it will assume its  mean value, B at a point somewhere near 

the center of the ionization dkitribution, e .  g .  i f  BL has a linear 

variation with distance then its weighted mean value will be at  

the centroid of the ionization distribution along the slant path. 

- 
L' 

Figure 1 shows a plot of mean ionospheric height as a 

function of ionospheric point latitude for a fictitious satellite 

pass  along the 75OW geographic meridian a t  lOOOkm altitude. 

Chapman-@ 

the height of the maximum ionization density is used in this model 

calculation. 

A 

model with the scale height of 75km and 250km as 

The vertical centroid of such a distribution is found 

by numerical integration to be a t  340.5 km. As i t  can be seen 

from the graph, the calculated mean ionospheric height does not 

differ from the centroid of the ionization by more  than 8 km 

between 36ON and 42'N latitudes. 

Reasons for larger  deviations outside this region will be 

discussed later.  
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C H A P T E R  3 

INSTRUMENTATION 

1. Satellite 

Data fo r  this study have been obtAined by making use of 

signals transmitted by the S,-66  Ionospheric Beacon Satellite, 

Beacon B which has a2 almost poPir ar.d circular orbit with a 

nominal altitude of 1000km, 

Orbit parameters  a r e  as follows: 

Nodal Period 104.8 minutes 

Inclination 

Perigee 

79.7 degrees 

890 km. 

Apogee 1070 km. 

The satellite t rd-lsrn t s c o  t 1-  UC.IJS  uvmodLl.xted, l i n e a  rly 

polarized waves a t  20MHz,  40MH I;~ and 41MHz wlth power outputs 

of 250 m W .  

by operating the trar-smitters from ;t ,ingle ultr'istable crystal  

o sc illator. 

Harmonic re3ationships between the signals a r e  achieved 

The satellite anternas at these frequencies a r e  colinear 

dipoles placed normal to the sstelljte dxis which is magnetically 

stabilized to be oriented along the  direction of the local magnetic 

field. 

designed to be less  than 0 . 0 2  rotatiocs pe r  minute. 

The spin about the axis i s  damped mechanically to a rate 

(12 ) 

2.  Receiving and Analysis Equipment 

Figures 2 and 3 show hlock diagrams for  the equipment 

designed to record Faraday rotat,ion and doppler shift  data. 
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Signals from the satellite a r e  received by two linearly and two 

circularly polarized antennas. 

channels use the same horizontally polarized linear dipole so that 

for  these frequencies both the satellite source antenna and the 

receiving antenna a r e  common to both ireqiiencies. 

to each receiver a signal from a tracking oscillator is added to the 

satellite signal picked up on the antenna, and both a r e  amplified 

together. As they pass through the detector those two signals beat 

together. to produce an audio beat frequency which is further 

amplified and filtered before being recorded on the magnetic tape 

r ec or  der  . 

The 40MHz and 41MHz linear 

A t  the input 

The same tracking oscillator provides reference signals 

for  each satellite frequency by means of a frequency multiplying 

chain from a 1 MHz base oscillator. 

the beat frequency of each receiver to be almost constant by 

changing the base oscillator frequency to maintain a constant 

difference frequency above the satellite frequency for a selected 

channel. Fo r  this experiment an offset of 500Hz above the f re -  

quency of the 40MHz circularly polarized channel was used. 

A discriminator loop causes 

By referring all frequencies to harmonics of the reference 

oscillator, phase relationships between the received signals a r e  

preserved, while the amplitude of the audio beat frequency is pro- 

portional to the satellite signal amplitude. 

on magnetic tape together with the standard time signal from WWV. 

When the tapes a r e  played back, the signals from the l inear 

All  signals a r e  recorded 

antennas a r e  envelope detected to produce Faraday rotation data. 
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Dispersive doppler shift data a r e  obtained from the phase relation- 

ship between the signals from 2OMHz and 40MHz circularly 

polarized antennas. 

char t  recorder. 

A l l  data a r e  recorded on a multichannel 

Figure 4 shows a portion of a typical record. 

The plots marked "linear" on figure 4 display the amplitude 

of the signals received on the linear antennas and a r e  used for 

measurement of Faraday rotation. 

polarization of a received signal passes through the plane perpen- 

dicular to the linearly polarized antennas, which a r e  oriented in 

the east-west direction, the amplitude of the signal reaches a 

minimum level. 

each successive null seen on figure 4 corresponds to a half-rotation 

of the plane of polarization of the received signal. 

Every time the direction of the 

Thus for a continuous rate of Faraday rotation, 

The plots marked "doppler" show the rate  of change for the 

difference between phase path reductions of 20  MHz and 4 0  MHz 

signals measured a t  a comparison frequency of 4 0  MHz . 
plots a r e  from quadrature phase comparators and a r e  used to 

detect any reversals of the rate of change of differential phase 

path reduction. 

The two 
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CHAPTER 4 

ME THOD OF ANA LYSIS 

1. Determination of Absolute Faraday Rotation 

As can be seen from figure 4, only differential Faraday 

rotation and doppler shift can be measured directly from the data. 

Because of amplitude fluctuations in the received signals and non- 

linearity of the Faraday rotation rate,  the most accurate determi- 

nation of the rotation angle can be made a t  the nulls of the signals 

and interpolation between nulls may give erroneous results.  (Each 

successive null represents a half-rotation of the plane of polari- 

zation of the propagated signal. ) For  a pass of the Beacon-B 

satellite, the rotation always increases uniformly toward the 

south, except for few passes  for which the rotation may change 

direction for an extremely disturbed ionosphere. 

For a mid-latitude station like University Park ,  Pennsylvania, 

since the satellite does not pass through the t ransverse condition 

while above the radio horizon, i t  i s  not known how many rotations a r e  

present a t  the northernmost null recorded. 

by making use of two closely-spaced frequencies. 

This problem i s  solved 

,w) 
If there i s  a difference of A" between the absolute rotations, "1 

and Q2, of two signals with frequencies f l  and f2, then 

and 
AS2 "2 

" 1 = l - -  "1 
Since in the f i r s t  order  theory the Faraday rotation i s  in- 

versely proportional to the square of the frequency of a signal, 
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. 

As1 
9 1 

f12 

f 2  
-7 

40MHz and 41MHz signals a r e  used to determine the 

absolute value of the Faraday rotation. Equation 10 reduces the 

problem to finding the fractional difference of rotation between these 

two signals. 

coincides with a 41M& null so that  AS2 becomes an integer. 

This is done most accurately wheii a 403.4fiz nldl 

For  

such case, from equa’tion 10, 

Q0 = 20.7511y2 = 20.7% (11) 

The ambiguity of finding the value of the integer n is  

resolved without any difficulty virtually for all instances. n is 

usually equal to either one or two, and only the correct  value 

gives reasonable results for electron content, especially with 

regard to magnitude, gradient, and time of day. 

2.  Determination of Absolute Phase Path Reduction 

There is no simple method for the determination of absolute 

phase path reduction, since the satellite contains no provision for 

such purpose. Only changes of this quantity with satellite position 

can be found from the phase path dispersion between harmonically 

related transmitters.  Because of experimental complexities, only 

2OMH.z and 40MHz signals are used for data reduction. 

The problem of evaluating absolute integrated dorpler shift 

can be solved by making use of the equation 9 which can be rewritten 

a s  
s1 
0 APo = K -  - 

B, 
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- 
Since 0 can be calculated, a knowledge of the value of BL 

0 

enables us to evaluate aPo. 

tudinal magnetic field component against height along the ray path 

Figure 5 shows a plot of the longi- 

for a specially chosen satellite position. 

the ionization density profile for a normalized Chapman-cr 

which may be considered a s  a typical profile. 

The dotted curve presents 

layer 

It can be observed 

that B 

altitudes. 

has almost no gradient with height between 200km and 500km L 
The centroid of any normal electron density profile will 

be in this range; therefore, for this satellite position the measured 

value of Q can be converted into a corresponding value of AP with 

almost no dependence on the assumed mean ionospheric height. 

For a mid-latitude observing station there i s  a locus of directions 

in which the longitudinal component of the ear th 's  magnetic field 

has the above property. 

positions fo r  which BL has zero gradient a t  300km altitude taking 

satellite height a t  1000km. 

Figure 6 shows a locus of satellite 

The c ross  mark  a t  the middle of the 

figure indicates the position of the recording station a t  University 

Park ,  Pennsylvania for which the locus of positions i s  calculated. 

3. Calculation of Mean Ionospheric Height 

The preceding sections describe some of the theory and 

techniques used for the calculation of mean ionospheric height. 

Actual data reduction has been on IBM 7074 computer following the 

procedure to be explained below. 

At first  the fractional rotation differen ce,  A n ,  between 

40MHz and 41MHz signals i s  measured usually with l inear 
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interpolation between two 41MXz n-.zITs. AIthough the Faraday 

rotation is seldom linear with time, the AS2 measurement can be 

done at a place where a 40MHz nul l  almost coincides with a 41MHz 

null, and the uncertainty due to this nonlicearity can be lowered to 

be less  than 0. 5 per cent. Starting wit.3 this initial null and adding 

o r  subtracting, depending on the direction which the satellite i s  

travelling, a half-rotation for each s u c c ~ s s i v e  null, S2 at  every 

40MHz null is calculated f o r  the entire pass. 

In order to evaluate the a b s o l ~ t e  doppler shift, a program was 

written to find the satellite positior, for which B 

a t  300km altitude along the ray path. 

has zero gradient L 

This height was chosen 

arbi t rar i ly  a s  a reasonable ionospheric height and its particular 

value introduces very little uncertainty !.n the results.  &2 f o r  

this position, which i s  usually to the north of the station, is evalu- 

ated by interpolating between the fwo Ldjacrnt 40MHz nulls. Uncer- 

tainties due to non-linearities of the F,raday rotation a r e  reduced 

with a non-linear interpolation using poiitions of the 20MHz nulls as 

reference. 

AP 

Knowing Q0 and using the ;-due of B 

is calculated a t  this point f rom -quation 12. 

a t  300km a s  BL, L 

0 

By counting changes of APa i'icm this point to the positions of 

40MHz nulls, it is possible t o  determine ATo.  to calculate B L a t  

these points f rom equation 9, c;nd henie to  f ind the mean ionospheric 

height. 

Fo r  satellite positions, orbital ephemerides supplied by the 

Goddard Space Flight Center have been used. 

calculations have been made using GSFC(9 /65)  field model. 

Al l  magnetic field 

(see la te r  discussion). 



4.  Resolution Power s f  the Method 

The assigr-ment of a n  absolute value to the phase path 

reduction can only be done if there Is a direction in which the 

longitudinal component of the magnetic field 2 s independent of 

height. However, the subsequent calculation of mean ionospheric 

height using equatiort 9 requires thdt a substArltial gradient of the 

field component with height must be present i f  good height 

resolution is to be obtained. 

be met  in different directioss withir the field of view of the 

observing station, 

These conflicting requirements can 

Figure 7 shows a cor,tour map of the height resolution in 

kilometers which can be obtained in different directions for an 

a rb i t r a ry  tolerance of one per  ce r t  q~ the v”ilue 01 

by equation 9. 

locus of zero lorgitudirial F e I d  vari.ifion with height. 

seen that there is a significmt range of directionc withir which the 

mean ionospheric height may be determined reasonably accurately. 

With an assumptiox: that experirnent3J u~ ,cer tdI~*1es  can be kept 

within this one per  cext tc~lera-*:r;.  ar-v height cnlcuLtion inside the 

contour of 30km will be considered signiticant. T h i s  area is about 

15 

spheric points-ionospheric poirlt is  defined as the point which 

corresponds to the ionospheric height along the r,.tv path. 

computed 

Jn thi. figure the dashed curve corresponds to the 

L 

it  can be 

0 0 across  for the satellite 1czt;tG;cle positions and 5 for  the ioco- 

5. Second-Orde r Correc ti.or_s -I 

A s  figure 7 indicates, in order  to 0btdj.n signiiicant results,  
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- 
the tolerance of BL m u s t  be at the most 1 per cent. Such 

restriction makes this technique a precision method, and for 

such purpose the f i rs t -order  theory described in chapter 2 

becomes insufficient. The f i rs t -order  theory is based on the 

assumption of straight line propagation which i s  equivalent to the 

medium being of uniform ionizatjon density over the entire propa- 

gation path and having a uniform magnetic field. In order  to 

relax these simplifying approximations second- o rde r cor  re  c tions 

were derived by Ross .  ( 9 )  The second-order equations increase 

the accuracy of the method to a desirable level, however they a r e  

still based on the assumption of horizontally stratified ionosphere. 

With these correction terms the following equation canbe written 

for Faraday rotation: 

where 

SI = second-order polarization rotation angle, 

= first-order polarization rotation angle given by 
0 

equation 4.  
- 
X = mean value of X over the slant path. 

-€- 
p =- 3L 

x2 
, a measure of the non-uniformity of the ionization 

distribution along the ray  path. 

G = a geometrical parameter involving the direction of 

straight line propagation, the magnetic field, and the 

vertical a t  the ionosphere point near  which the bulk 

. 

of ionization lies. 
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. 
. 

For  phase path reduction 

where 

APo = the first order theory value of phase path reduction 

given by equation 5.. 

8 

t signs in front of the te rm Y 

= the zenith angle at the ionosphere point 
- 

correspond to extraordinary L 

The proper sign must be and ordinary modes of propagatior. 

picked according to the mode of receiv.ed signal. 

Fo r  this study the phase path reduction is measured by 

taking phase difference between 20MHz and 40MHz signals, and 

the final equation for the doppler shift effect can be written a s  

where 

APD is in cycles measured at 40MHz 

R = the average of X for 40MHz 

Q0 = the f i rs t -order  Faraday rotation for 40MI-Iz expressed 

in half - rotations 

Equation 9 which is used to calc:l?are 3 and determine L 
mean ionospheric height requires f i rs t -order  values of phase path 

reduction and Faraday rotation. 

a r e  calculated f rom-  data which contain values of A P  

making use of equations 13 and 15. 

These quanti-ies, APo and no, 

and S2 by D 

For the second-order 
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corrections@ is taken to be 2 . 5  which is the value for a Chapman 

layer with a scale height of 67km and satellite height of l O O O k m ,  ( 9 )  

and X i s  calculated from the following equation, 

2 NT - e 

4rr ~ ~ m f  
x = 'z-2- h 

where h is the vertical separation between the satellite and the 

receiver.  N i s  determired from equation 7 using the measured 

valve of Faraday rotation as fi Since the difference between 92 
0' 

and no is just  a few p e r  cent, any iteration for a more  exact 

calculation of x becomes unncecessiry. 

T 



29 

r 

CHAPTER 5 

RESULTS 

1. Results for Selected Passes  

This method for calculating mean ionospheric height has been 

M n s t  of the data applied to several  passes of the Beacon B aatz??ite. 

reductions were done for day-time passes,  because of difficulties 

involved determining A!2 for night-time passes. A t  night the electron 

content decreases to about one-fifth of its day-time value and Faraday 

rotation becomes too 

interpolating between nulls. 

satellite is between 70° and 83OW longitudes 

since outside this range the porticn of the pass that l ies within 30km 

slow to obtain any degree of accuracy in 

Also only the passes for which the 

hdve been analyzed, 

uncertainty region become-, ~ C C J  S ~ C T ~  to do any useful analysis of the 

height variation with latitude. 

Figures 8 thru 11 show results fo r  few selected data. Both 

mean ionospheric heights and tctal electron contents, which a r e  

calculated with the assumpticn of horizontally stratified ionosphere, 

a r e  plotted against the latitude of :onospheric point. 

Beacon-B travels almost in the zorth-south directior ~t d constant 

height, a mean satellite height drd a mean longitude for ionospheric 

points are included for each grdpb., 

Since the 

Figure 8 shows a very commonly encountered mid-afternoon 

condition in which both the ionospheric height and the electron con- 

tent have no significant variation with latitude. Dashed par ts  of the 

ionospheric height curves indicate the regions where the resolution 

is worse than 30km for 1 per  cent uncertainty of BL(figure 7) .  
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2. Physical Interpretation of Mean Ionospheric Height 

Although the mean ionospheric height is defined as the height 

a t  which BL assumes the value of BL, it has a very close relation- 

ship to the centroid of the ionization profile. This mat ter  was 

discussed a t  the end of chapter 2 with figure 1 showing that for 

latitudes between 3 6 O  and 42O the ionospheric height does not differ 

appreciably from the centroid of the vertical ionization density pro-  

file. 

where the height resolution is 30km o r  better. 

A study of figure 7 indicates that this portion is in the region 

If the longitudinal 

component of the ear th 's  magnetic field is a linear function of 

altitude, then the calculated ionospheric height should become equal 

to the centroid of the ionization disitribution along the slant path be- 

tween the satellite and the receiver.  

the centroids of the slant path and the vertical  column coincide, 

F o r  a flat-earth approximation 

however for a spherical earth the lower par t s  of the ionosphere a r e  

weighted more while calculating 5 
of the satellite increases,  theoretically for  linear BL the centroid 

of the slant path assumes lower values than the vertical  centroid. 

The difference i s  about 4km a t  45O zenith angle for a Chapman-a 

Therefore, as the zenith angle L' 

layer . 
When the value of BL does not vary linearly with height, a 

further displacement of the mean ionospheric height from the 

centroid will result. In figure 1 the mean ionospheric height is 

lowered in the central region because B 

rate greater  than linear, while near the edges the reverse  is  the case.  

decreases  with height a t  a L 



. Considering above c i i s ~ u ~ s i ~ n s ,  IT can be said that, within 

the tolerances of the method, the cai8cuia:eed mean ionospheric 

height represents the height oi the centroid of the icnization profile. 

a. 2 Discussion of Abnormal. Pass e E 

With above physical interpretition of ~ l l e  an ionospheric height, 

an attempt can be macle for the expknation of abnormal pass-s 

shown on figures 9,  10 and 11. 

Figures 9 and 10 show c ~ s e s  for which ionospheric height 

remains almost constant ail  thro1;ghout the pass while electron 

density shows some incsesse toward the south. This phenomenon is 

almost a s  common as the case shown or, figure 8. An increasing 

electron content gradient wSth latitcde to the south has also been 

found by others working on the mid-Tat:'t.zlde ionosphere. (11) 

Figure 11 inrrodhces a more cornpiicated ease where both 

the height and electron content l ave  arA abmrr-al  variation with 

latitude. The wave-shaped app3arancc of the electron content and 

the sudden change of the izmospherlc hc,ght might be 2n indication of 

a traveling disturbance. 

ron content is observed ocras;ozally, sowtver  lack of data f rom 

Tnjs abmost sir.e-k,ave rlpple of the elect- 

near-by stations whish have ioaospherfc scundjng ELL djt ies  pre- 

vented any study that might show a correlation betwen these 

irregularit ies and traveling disturbances. 

A l l  these abnormal passes 'Loincfde with quiet days of the sun, 

but relationships between these and oxher geophysinal events like 

solar f la re  were not one of the objects of this study and no 

conclusion has been drawn or, the subject" 
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CHAPTER 6 

UNCERTAINTIES 

1. Measurement Uncertainties 

Because of the fact that the height resolution of this method is  

limited, its application requires high quality data, and uncertainties 

must  be kept at  a low level so  that rhey will not exceed the arbi t rary 

one per cent tolerance for  the calculated BL. Some of those uncer- 

tainties a re  due to data reduction e r r o r s ;  others occur because of 

the approximations that were made to obtain simpler propagation 

equations o r  a r e  due to assumptions about t h e  satellite and the 

ionosphere, e .  g. i t  is assumed that the satellite has  no spin around 

its magnetic axis. 

A s  stated before, much care  has been taken measuring 

the fractional difference of rotation between 40MHz and 41MHz nulls, 

since any measurement e r r o r s  on this quantity affect the results 

directly. 

this major  source of e r r o r  can be kept well-below 0. 5 per  cent 

tolerance. 

W i t h  careful selection of the place where An is determined, 

Figure 1 2  shows effect of an e r r o r  in the initial value of 

M on the mean ionospheric height profi:e. 

obtained by adding a T 2 per cent e r r o r  to the measured value of 

hLz which wae evaluated at  a time corresponding to 47. 8 N iono- 

spheric latitude, 

the results derived f rom the actual mehsured value of An. 

Differences between the profiles a r e  almost simple displacements 

in height with very small  gradients with latitude. Since the actual 

These curves were 

0 

The curved marked "nominal profile" shows 
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uncertainty of AS2 is about 0 .5  per cent only instead of 2 per  cent, 

the uncertainty introduced by an erroneous measurement of AS2 

may cause about 8km displacement into height profile, 

Another source of e r r o r  is in the scaling process; i . e .  the 

Most nulls a r e  of reading of the times of the observed nulls. 

sufficient sharpness to be read to the nearest  tenth of a second, and 

L this will cause a deviation of much less  than 0 .1  per cent in 

which is very small  compared with other uncertainty terms.  Also 

the determination of the differential doppler cycles between two 

points can be made without introducing any significant a r eas  as the 

counting procedure is almost exact. 

2 .  Field Model 

The accuracy of the magnetic field model is also of vital 

concern. 

GSFC (9/65) field model for epoch 1960 with 99 harmonic coefficients 

and 35 time derivatives. Although discrepancies in the order  of few 

The calculations in this study have been made using the 

hundred gammas between this field model and actual surface 

measurements have been found, comparisons of the mqgnitude of the 

magnetic field from the model with results from satellite magneto- 

meters  yield a rms  e r r o r  of only 20  gammas over the United 

States sector. (Private communication with S. Hendricks, Goddard 

Space Flight Center) An analysis based on this figure indicates that 

b 

it should provide values of BL which a r e  not in e r r o r  by more  than 

about 0.1 per cent. 
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3 .  

I *  

I -  

Satellite Spin 

An e r r o r  can be caused in the observed rotation of the 

plane of polarization due to the spinning of the satellite about i t s  

magnetic axis. In the original specifications published, the 

satell i te is said to spin l ee s  thaz 1.2 revolutions every hour. 

Figure I3 shows effects of satellite spin on the ionospheric height. 

for  a pass  of the Beacon B satellite. These curves were obtained 

by assuming that satellite had a 2 revolution-per-hour spin around 

its magnetic axis ,  and the actual Faraday rotation data were 

modified accordingly. 

assumed zero  spin; the others indicate effects of the satell i te spin 

as it is assumed in the clockwise o r  the counter-clockwise 

directions. 

The middle curve shows the resul ts  for 

A s  it can be seen a constant satellite spin introduces an  

almost constant displacement in the ionospheric heights over the 

range of calculations. 

satellite, any i r regular  spin patterns a r e  not expected, and during 

a time of an observation which is usually less  than 10 minutes any 

residual spin should be of a systematic nature. 

spin-rate is expected to be l ess  than 1.2 revolution pe r  hour, 

the maximum height uncertainty is about l 0 h  from this  cause, 

and is almost uniform over the useful range of directions. 

Because of magnetic damping devices on the 

Since the actual 

4. Uns tratified Ionosphere 

The second-order correction t e rms  that were discussed in  

chapter 4 were derived with the assumption of a horizontally s t ra t i -  

fied ionosphere. Natura l ly  any dis twbed ionosphere will  not be 
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I .  

horizontally stratified, and these correction factors may not be 

adequate. Most cases of disturbances can be studied with two 

simple models. 

A qualitative study of such case indicates that the additional 

correction terms might become negative o r  positive depending on 

the tilt angle of the stratification. If the geometry that was used 

d&i&gthe second-order equations(9) is studied, it can be seen 

that such tilting of the ionosphere will  be equivalent to tilting the 

horizontal plane a t  the observation station. 

One of them is a model with a "tilted" ionosphere. 

Another deviation from the horizontally- stratified ionosphere 

is the case for which the total electron content has a horizontal 

gradient. 

a constant density slab, then this effect can be studied, using a 

model with the ionosphere in  the form of a prism. 

If the ionosphere can be simplified to be in the form of 

Although no complete quantitative analysis of these effects 

has  been attempted, it is  to be expected that their inclusion in the 

propagahfi  equations will result in correction te rms  similar to 

those derived from the analysis of a stratified ionosphere, and 

this effect should vary a s  the inverse frequency squared. Their 

effect has been studied experimentally by comparing Faraday 

rotatinns of harmonically related signals. 

Figure 14 shows a plot of the observed ratio of Faraday 

rotations for 20MHz and 40MHz. The dotted line shows the same 

ratio calculated using the second-order correction te rms  

(equation 11). 

gradient of the ionospheric content (figure 9 ) . 
An analysis of this pass indicates some horizontal 

The differences 
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. 

between the actual and the calculated ratios a r e  in the order  of 

0 . 5  per cent which corresponds to an uncertainty of less than 0 . 2  

per cent for the rotation of the polarization plane for the 40MHe 

signal. 

Figure IS 6 2 0 ~ : :  3 plot of the same ratio for another pass 

which was discussed before figure 10). This pass  is t&e most 

i r regular  one that has been found among the data that covers a 

period of one and a half years.  Even at the worst  case the 

difference between the two curves is about 2.5 per  cent which 

corresponds to 0.75 per cent uncertainty for the Faraday rotation 

of the 40MHz signal, 

Lack of an additional harmonically related signal prevented 

any study of the prigm and the tilt effects for the doppler shift. 

It is believed that these uncertainties will not cause e r r o r s  over 

1 per cent of the calculatedBL, except perhaps in the most 

severe cases.  

In any case the errore introduced by inadequate correction 

for non-stratified medium conditions should be of a transient 

nature and should be restricted to the interval where the changes 

are occurring. Ehergence of the satellite locus into a stratified 

region should restore  the accuracy of the method. 

while the detailed form of the changes may be imperfectly des- 

cribed, their magnitudes should be quite accurately determined. 

Therefore 

In summary, it may be concluded that height variations 

which exceed about 20km in magnitude a r e  always significant, even 
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i f  the absolute height values are possibly displaced by certain 

of the systematic errors described here. 
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CHAPTER 7 

SUMMARY 

1. Summary and Conclusions 

A method has been developed for the determination of the 

mean ionospheric height from analysis of unmodulated constant f r e -  

quency signals from ionospheric beacon satellites. 

of the ionosphere that can be readily observable on the received 

signals a r e  a rotation of the plane of polarization and a reduction 

of phase path length. 

measurable quantities, i t  becomes possible to determine a height 

which has a very close relationship to the centroid of the ionization 

profile. 

Major effects 

By looking for consistency between these two 

Calculation of such height requires knowledge of the 

absolute values for the rotation angle of the plane of polarization, 

and the reduction of phase path length; however only changes in these 

quantities with satellite position can be measured. 

value of Faraday rotation is determiced by making use of the 

relationship between two closely-spaced frequeqcies. 

of determining the absolute value of the reduction of phase path 

length is solved in  a direction where the longitudinal component of 

the earth 's  magnetic field has zero gradient with height. 

of such directions exists for a mid -latitude stztion. 

The absolute 

The problem 

A locus 

Based on an analysis of the uncertainties in the system, it 

can be concluded that with this method variations of mean iono- 

spheric with latitude can be determined with a tolerance of 

althoggh absolute height calculations might c a r r y  la rger  

20km, 
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uncertainties. 

2. Advantages of the Method 

Although with the method developed, only he ..eight of the 

centroid of the electron distriiiution caii te determined: coupled 

with total electron content measurements and because df its ’ 

continuous -coverage i t  ca r r i e s  some advantages for studying 

ionospheric variations with hcation and large silte irregularit ies 

in  the F -region, es.pecially traveling disturbances. 

Some of the other methods that a r e  presently used for 

determination of electron density profiles a r e  ionospheric 

soundinjp, topside and bottomside, and incoherent scatter 

methods. Although topside sounders have the same continuity 

advantage as the beacon satellite experiments, they have to be 

complemented with results from bottom side sounders which 

have very little spatial coverage. Also the accuracy of height 

determination of sounding methods becomes quite low near the 

maximum ionization level. 

3. Topics %at Need Further Research 

A s  discussed in chapter 6, a main contiibution to the 

uncertainties of the method comes from the insufficiency of the 

second-order theory to approximate i r regular  cases  where the 

assumption of a horizontally startified ionosphere cannot be 

applied. Only some qualitative analyses and some experimental 

measurements of these cases have been car r ied  out f o r  this study. 
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Such irregularit ies which can be simplified into two 

different models, pr ism and tilted ionosphere, need further 

quantitative and analytical research. With solutions of this 

uncertainty the accuracy of the method can be improved 

considerably. 

The major purpose of this study h2s been development 

of the method,therefore there has not been any systematic data 

reduction. 

of diurnal and seasonal variations of the ionospheric height. 

Further  work on this subject will yield determination 

This method can be applied only a t  mid-latitude observa- 

tion stations where there can be a locus of the directions for 

which the longitudinal component of the ear th 's  magnetic field 

along the r a y  path has no height dependence. 

no such locus for an equatorial receiving station for which the 

height resolution i s  much greater ,  the method still can be 

applied to equatorial station. In this case the absolute value of 

the reduction of the phase path has to be determined a t  .a .location 

where the electron density profile can be obtained from other 

sources,  such a s  the incoherent back scat ter  method. 

Although there i s  
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